
A Smart Fuzzer for x86 Executables

Andrea Lanzi, Lorenzo Martignoni, Mattia Monga, Roberto Paleari
Dipartimento di Informatica e Comunicazione

Università degli Studi di Milano
Milano, Italy

{andrew,lorenzo,monga,roberto}@security.dico.unimi.it

Abstract

The automatic identification of security-relevant flaws
in binary executables is still a young but promising re-
search area. In this paper, we describe a new approach
for the identification of vulnerabilities in object code
we called smart fuzzing. While conventional fuzzing
uses random input to discover crash conditions, smart
fuzzing restricts the input space by using a preliminary
static analysis of the program, then refined by monitor-
ing each execution. In other words, the search is driven
by a mix of static and dynamic analysis in order to lead
the execution path to selected corner cases that are the
most likely to expose vulnerabilities, thus improving the
effectiveness of fuzzing as a means for finding security
breaches in black-box programs.

1 Introduction

Fuzz testing [16] (also known as fuzzing) is a very sim-
ple technique of black-box testing. The basic idea is to
attach the inputs of a program to a source of random
data: any resulting failure is taken as a symptom of
a defect in the program. This approach was success-
fully used to discover bugs in popular programs, though
released without the source code [16, 15]. Since its in-
troduction, the fuzzing approach has became a major
tool in security analysis. However, while this approach
works well when aimed at searching generic failures,
penetration testers are usually interested in more spe-
cialized corner cases1. In fact, while generic failures
might be exploited to cause denials of service, in order
to find more subtle bugs suitable for program sabotage
more control about the coverage of program paths is
needed. By using random data, though, even a single
equality condition on just one byte of the input data

1A corner case is a problem or situation that occurs only out-
side of normal operating parameters – specifically one that man-
ifests itself when multiple environmental variables or conditions
are simultaneously at extreme levels [20].

could be difficult to satisfy wittingly: in fact, satisfy-
ing randomly a 32-bit equality corresponds to guessing
by chance the correct value out of four billion possibil-
ities. Blind guessing is very unlikely to be successful
and some clue about the structure and behavior of the
application is needed. In a previous work of our group,
focused on searching for buffer overflow vulnerabilities,
signal monitoring was proposed to drive the fuzzing
and exploiting process [4]. Recently, great progress has
been achieved in the analysis of binary code, thus it
seems sensible to leverage in these results to ease the
search for nasty inputs that could be used to subvert
an application by exploiting memory errors.

Program analysis can be conducted according to two
basic approaches: (i) static or (ii) dynamic. Static
analysis techniques analyze the executable without ac-
tually running it: the program code is analyzed by
reasoning over all the possible behaviors that might
arise at run time. Static analysis is therefore complete
(i.e. results are correct, no matter on what inputs the
program is run), but often overly conservative since it
normally reports properties weaker than the ones that
actually hold in a specific execution. The conservative
nature of static analysis produces several false posi-
tives. Conversely, dynamic analyses, while unable to
examine all the possibilities, can provide more accurate
information about the program data-flow, because the
appropriate variable values in any particular execution
states are know at run-time, thus avoiding the impre-
cision intrinsic in “aliasing” and indirection analysis.

In this paper we take a hybrid approach, in order
to blend together the strength of both types of anal-
ysis [9]. To overcome the fundamental limitation of
the original blind fuzzing, we propose to use a smart
fuzzing, that exploits analysis techniques to improve its
effectiveness in penetration testing.

The goal of our work is to discover inputs able to
compromise the security of an application: such data
are sometimes known as inputs of death [5]. The
method we adopted can be divided into two distinct
phases: (i) a preliminary static analysis needed for col-
lecting information about the structure of the program

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

and to identify interesting paths of execution; (ii) a
subsequent monitored execution of the program, in or-
der to refine the knowledge about the program (e.g.,
by resolving the target of indirect control transfers, re-
solving pointers, . . .) and to identify the corruption
of sensitive program data (i.e., memory accesses and
targets of indirect control transfers).

The knowledge collected during step (ii) is refined at
every monitored execution and used to drive the gen-
eration of the input for the next one. The idea is to
choose the new input such that it forces the program to
follow a given execution path. Analysis tries to reveal
the dependencies among input data and the predicates
controlling the execution of the observed paths, called
path conditions, and their observed truth values. From
these predicates we generate a high-level boolean for-
mula (where the connections with the inputs are made
explicit) and, using a constraint solver, we try to find
what inputs we have to feed to the program to force it
to follow the chosen path. Hopefully, after a bounded
number of executions, if the program is vulnerable, the
input chosen is able to trigger the vulnerability and we
detect the corruption of one of the data we marked as
sensitive.

The paper is organized as follows. In Section 2 we
introduce a motivating example, and in Section 3 we
present the framework we have developed. Section 4
describes the techniques adopted to analyze a program,
to monitor its execution and to drive the input gener-
ation. In Section 5 we discuss some related works and,
finally, in Section 6, we sketch the state of our proto-
type and draw some conclusions while discussing our
plans for future work.

2 Motivating Example

The example2 depicted in Figure 1 should make clear
why blind fuzzing is often not very effective. The
procedure process_input receives an array of char-
acters and returns a sanitized copy, obtained by re-
placing every occurrence of the character ’\’’ with
the same character repeated twice. Since a temporary
local buffer is used but its size is statically bounded,
the procedure checks (line 5) whether the input can be
securely copied into that buffer or not. In the latter
case the procedure returns immediately. Despite this
security check, the procedure is vulnerable to a stack-
based buffer overflow. In fact an attacker might be able
to invoke the procedure with a buffer filled with ’\’’
and character duplication (lines 9–10) goes beyond the
end of the local buffer possibly overwriting the return
address stored into the stack.

It is easy to see that, even in a simple case like the
one in the example, if inputs were chosen completely

2In the following we deal with machine code, however, for the
sake of clarity, the example is shown in its source code form.

1 char* process_input(char* buf) {
2 char newbuf[64];
3 int i, j = 0;
4

5 if (strlen(buf) <= 58) // good assumption!
6 for(i = 0; i < strlen(buf); i++) {
7 if (buf[i] >= 32 && buf[i] < 127) {
8 newbuf[j++] = buf[i];
9 if (buf[i] == ’\’’)

10 newbuf[j++] = buf[i];
11 }
12 }
13

14 newbuf[j] = ’\0’;
15

16 return strdup(newbuf);
17 }

Figure 1: C code of a vulnerable procedure.

randomly the chances to force the program to execute
all possible paths and to satisfy all the conditions neces-
sary to trigger the vulnerability would be really small.
Therefore, a smart fuzzing approach should leverage on
the (partial) knowledge about the structure of the pro-
gram. Our goal is to be able to preserve the ability to
fuzz a program without knowing its source code (and
hence its high level semantics). However, we suppose
to be able to analyze the binary code in order to ex-
cerpt potential execution paths. Monitored executions
should then be used to select class of inputs that are
more likely to trigger interesting paths which could be
vulnerable.

3 Overview of the Framework

Our framework is aimed at crafting input data that are
likely to drive a program into corner states suitable to
memory attacks. Its use is iterative and self-refining: a
program is executed several times using different inputs
and the new information collected at every execution
is used to add extra information in order to select the
next input and to discover sensitive memory areas.

We start with traditional blind fuzzing, i.e., random
input data and no path conditions (PC = ∅). This ini-
tial program execution is monitored and whenever a
conditional control transfer is encountered a data flow
analysis is performed in order to determine if the pred-
icate p used in the conditional statement depends on
the input. If a dependency is found the path conditions
are updated as follows: PC′ = PC ∪ p is associated to
the true path and PC′′ = PC ∪ ¬p is associated to the
false path. The process can be in principle repeated
by monitoring the two forked execution paths and the
path conditions are consequently updated. Path con-
ditions can be used to select smart inputs for the sub-
sequent fuzzing operations.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

However, the above analysis is challenging and oner-
ous when performed on source code [19] and its com-
plexity is drastically increased when the program is
available only in executable form: in fact, the assem-
bled code has no high level predicates and the re-
lation between assembly jump conditions (consisting
only of elementary predicates) and higher-level expres-
sions (needed for constraining input data) has to be
reconstructed.

Our frameworks is organized in the following com-
ponents:

• an off-line analysis engine which is used to per-
form an initial static analysis of the program to
collect preliminary information, such as an ap-
proximation of the interprocedural control flow
graph (ICFG) and loop identification, that will be
refined in the next steps.

• An on-line monitoring engine which takes care of
executing and monitoring the program and track-
ing dependencies between the input and the dy-
namic control transfers encountered.

• A set of heuristic rules is used to identify interest-
ing paths that could lead to accesses to sensitive
memory areas and potential security violations.

• A constraint solver that, given a path in the pro-
gram we want to analyze and a set of path con-
ditions we discovered through monitoring, returns
an input that, when fed to the program, forces it
to follow the chosen path.

4 Framework Architecture

4.1 Off-line analysis

The goal of this phase is to provide a conservative
but potentially inaccurate view of the application that
will then be refined during monitored execution. Thus,
the executable object is parsed and disassembled us-
ing conventional techniques [6, 18]. In order to ease
the analysis, machine instructions are expanded into a
simple intermediate language that makes explicit side
effects on registers and memory areas. A control flow
graph of intermediate instructions is built. This step
may lead to inaccurate results since control transfers in
executable may be indirect, however we aim at produc-
ing an approximation whose accuracy will be improved
by the on-line monitoring.

An important aspect of our approach is approxi-
mated loop analysis to reduce the need for indefinite
iteration. A first part of the loop analysis process is
performed off-line: the control flow graphs are pro-
cessed in order to identify loops and the corresponding
entry and exit points [2]. This step allows the on-line

1 mov 0xffffffb4(%ebp),%eax
2 add 0x8(%ebp),%eax
3 cmpb $0x1f,(%eax)
4 jle 8

Figure 2: Assembly code generated by gcc for
buf[i] >= 32.

analyzer to detect when a new loop iteration is going
to begin and when the execution is coming out from a
loop construct.

4.2 On-line Analysis

Initially the program is executed with a random
input data and the initial state of the program is
collected. This process startup state (PSS) consists
of: the original state of processor registers, the set
of allocated memory regions, the program arguments,
the program environment and the list of dynamically
loaded libraries. Further inputs received by the pro-
gram during its execution (e.g. from a socket or a file)
are added later, by analyzing the parameter of the sys-
tem calls (e.g., read) executed by the program. The
program execution is monitored using the debugging
API provided by the operating system.

4.2.1 Data-flow Analysis

In order to track the information flow generated by
input data we perform a dynamic data-flow analysis.

As the program is executed, every machine in-
struction processed is semantically expanded (using
the intermediate form generated off-line) and for each
new intermediate instruction i we compute the set
define(i), of defined variables, and use(i), of used
variables (the term variable is here used to describe
both memory locations and registers). As we are
working at run-time, we can precisely tell which are
the memory locations used and defined by an in-
struction because we actualize all memory locations.
For example the 8-bit memory location with address
EAX + EBX, that in our intermediate representation is
written as m8[r32(EAX) + r32(EBX)], is treated as
m8[c32(80482f6)], where 80482f6 is the actual re-
sult of r32(EAX) + r32(EBX). Working with actual-
ized memory locations allows to precisely compute
data-flow dependencies with no need of conservative
overestimation.

The monitored program execution trace is con-
stantly recorded in an execution history [1] to make
it available to future steps of the analysis. The ex-
ecution history, EH, is a list of instruction instances
〈s1, s2, . . . , sn〉. We refer to an instruction instance as
s = ik, where i is a program instruction and the su-
perscript k distinguishes between multiple occurrences

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Input: j, a conditional jump instruction instance

foreach f ∈ use(Rhs(j)) do
Replace(Rhs(j), f, Rhs(drd(f, j)))
foreach v ∈ use(Rhs(j)) do

if IsTemporary(v) then
Replace(Rhs(j), v, Rhs(drd(v, j)))

Replace(Rhs(j), Rhs(j), Simplify(Rhs(j)))

Figure 3: Algorithm for RecoverPredicate.

of the same instruction in the execution history. When
an instruction is executed, the execution history is up-
dated accordingly. By keeping an execution history, we
are able, at any program point and for every program
variable, to precisely compute the dynamic reaching
definitions and then directly formulate queries about
the data-flow.

For example, after the execution of the code in Fig-
ure 1 with input buf == "a’", the execution history is
EH = 〈51, 61, 71, 81, 91, 62, 72, 82, 92, 101, 63, 141, 161〉.

The dynamic reaching definition [1] drd(v, sk) of a
variable v used by instruction instance sk is an instruc-
tion instance sk−j such that v ∈ define(sk−j) and
@ sm,m ∈ (k − j, k) : v ∈ define(sm).

Let us now suppose we are interested in computing
the dynamic reaching definition for the variable j used
by instruction instance 141. We can simply scan the
execution history backwards, starting from entry 141

and searching for the first instruction instance that
defines j. Therefore the dynamic reaching definition
for j, when used by the instruction instance 141, is
drd(j, 141) = 101.

4.2.2 Path-conditions

Whenever a conditional control transfer instruction
is executed by the program, we perform the path-
conditions analysis. The main problem at this point
is that the predicates of conditional control transfer
instructions are expressed only through control flags
which store the result of the computation representing
the evaluation of the predicates. In order to generate
meaningful path conditions we have to extrapolate the
semantic of predicates with respect to input data.

As an example, the assembly fragment in Figure 2
shows how the high-level predicate buf[i] >= 32 from
line 7 of the program in Figure 1 has been translated
by the compiler. Note that the condition evaluated
by the jle has been negated by the compiler, i.e., if
the condition is true the “then” block will be skipped.
Moreover, the conditional jump statement implicitly
uses ZF, OF and SF control flags: these side effects are
made explicit by the intermediate representation.

The algorithm we have developed to translate low-
level conditional control transfer instructions into high-

level predicates is reported in Figure 3. It relies on the
following definitions:

• Simplify(e), returns the expression resulting from
the simplification of the expression e;

• Replace(i, e, e′), substitutes all occurrences of the
expression e with the expression e′ in i;

• Rhs(i), returns the right-hand side of instruction
i; in conditional jumps this corresponds to the
branch condition.

The algorithm is applied on a conditional jump in-
struction instance and works as follows. All occur-
rences of control flags in the expression representing the
jump predicate are replaced with the dynamic reaching
definitions (the propagation may be applied twice to
avoid temporary variables) and the resulting expression
is then transformed and simplified by our simplification
engine which is able to manipulate logical and arith-
metic terms to express them in a simpler and canonical
form. Eventually, the condition of an instruction like
jle 8 will be translated in a form as m8[r32(EAX)] ≤
c8(0x1f), meaning that the content of the 8-bit mem-
ory region with address EAX must be less than or equal
to the 8-bit constant 0x1f.

Jump conditions are then translated into path con-
ditions over the input data. The algorithm we use to
perform this step is described in Figure 4. The output
is a jump instruction instance with a conditional ex-
pression whose terms are either constants or memory
regions related to the input.

It is worth noting that in general the search for a dy-
namic reaching definition may be complicated by the
overlapping of memory locations. In fact, in the worst
case, up to n different assignment statements, each
one defining a single different byte inside the mem-
ory range [m,m + (n − 1)], could contribute to the
dynamic reaching definition of a n bytes long memory
region with base address m. In the algorithm described
by Figure 4, drd takes care of these problems, thus
r = drd(v, sk) returns a virtual instruction that rep-
resents the combination of every program assignment
instruction that contributes to the definition of variable
v at a particular execution step.

The condition of the previous example statement
(jle 8), became m8[r32(EAX)] ≤ c8(0x1f) after in-
termediate translation, predicate recovery and simplifi-
cation, should be now the target of the recursive reach-
ing definitions propagation, which gives the final form
of m8[c32(0xbffffae4)] ≤ c8(0x1f). The address
0xbffffae4 turns out to be a location belonging to
what in the source code is called buf. Moreover, sup-
posing that the variable buf is directly controlled by
some input data, no more propagation is needed and
the path condition buf[i] <= 31 is correctly deduced
by the dynamic analysis.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Input: j, a conditional jump or assignment instruction
instance; I, the set of input variables

foreach v ∈ use(Rhs(j)) do
if v ∈ I then

do nothing as the expression already represents
the input

else if @ r : r = drd(v, j) then
Replace(Rhs(j), v,PSS[v])

else

Replace(Rhs(j), v, Rhs(PropagateDRD(drd(v, j))))

Replace(Rhs(j), Rhs(j), Simplify(Rhs(j)))

return j

Figure 4: Algorithm for PropagateDRD.

Several conditions have to hold to reach a given pro-
gram point, thus we join the new condition to the exist-
ing path conditions. As an example consider the pro-
gram in Figure 1 with the input buffer buf == "a’".
Before executing for the first time the assignment at
line 8, the path condition3 is PC = {buf0 6= 0 ∧
buf1 6= 0 ∧ buf2 = 0 ∧ buf0 > 31 ∧ buf0 6= 127}4.

Recurring patterns in conditions are translated into
higher-level concepts such as “length of a string” or
“(dis)equality of two memory areas”. For example, the
above condition is equivalent to asserting that the buf
string must be 3 bytes long: PC = {strlen(buf) = 2∧
buf0 > 31 ∧ buf0 6= 127}. Although in our exam-
ple strlen was invoked directly, the high-level con-
dition was automatically generated during the anal-
ysis by tracing the execution of the library function.
Thus, such condition can be reconstructed not only
when strlen code is inlined by the compiler or linked
statically into the executable, but also when it is reim-
plemented from scratch.

4.2.3 Loop Analysis

As far as dynamic analysis is concerned, loops are prob-
lematic, since in principle they should be executed any
possible number of times. In fact, in general, variable
definitions can be different for any different iteration.
We perform a preliminary loop analysis to try to re-
duce the relevant iterations by estimating the loop con-
ditions that lead to modifications of sensitive memory
locations. While loop identification could be performed
off-line, loop conditions and loop induction variables5
are approximated dynamically.

3For clarity memory addresses are represented symbolically
by bufi.

4The test buf0 6= 127 is due to the translation of the source-
level inequality buf[i] < 127: GCC allocates a char variable as a
1-byte signed memory location, ranging in [−128, 127].

5An induction variable is defined as a variable that gets in-
creased or decreased by a fixed amount on every iteration of a
loop, or is a linear function of another induction variable.

With our loop analysis, we are able to perform some
kind of abstraction of the loop’s behavior from the par-
ticular input data set related to current execution. By
observing the relationship that exists between loop con-
dition and input dependent data and how a loop induc-
tion variable could affect the destination address of a
memory assignment, we can define a virtually harmful
set of input constraints without actually trying every
possible number of loop iterations.

4.3 Heuristics

Heuristic rules are needed to identify sensitive mem-
ory regions and execution paths that could lead to secu-
rity violations. No completeness guarantee can be pro-
vided, but our strategy aims at concentrating fuzzing
efforts in likely critical paths.

4.3.1 Sensitive Memory Corruption Detection

During runtime analysis, each data that originates or is
derived from an untrusted source is marked as tainted :
we start by marking input data as tainted, and then
we dynamically keep track of how the tainted attribute
propagates to other data.

Similarly, we start with a minimal set of sensitive ar-
eas (e.g., main() return address is immediately marked
as sensitive). As the execution goes on, new sensi-
tive memory regions are found or existing ones are dis-
carded. As an example, when a new procedure is exe-
cuted the memory region that holds the return address
pushed on the stack by the call instruction is marked
as sensitive until that procedure returns. Targets of
indirect control transfer instructions and data struc-
tures employed for dynamically allocating memory re-
gions (i.e., maintenance heap data structures used by
malloc–like C library functions) are considered sen-
sitive, since they constitute common targets for heap
overflow attacks [14]. Even the entire .got and .dtors
sections could be marked as sensitive.

To detect when sensitive data could be overwrit-
ten or when the execution flow could be maliciously
hijacked, during runtime analysis we search for indi-
rect control transfer statements whose target address
is tainted, or for intermediate assignment instructions
like *addr = d where: (i) the address addr of the mem-
ory location defined by the instruction is a tainted, or
(ii) addr is the address of a sensitive memory location
and d is a tainted memory region.

Moreover, we associate the corruption of other data,
that we can not classify as sensitive (e.g. local user-
defined variables), to segmentation faults raised during
the execution.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

4.3.2 Critical execution paths

Typical rules that can be used to select the paths that
should be considered critical to cover during fuzzing
are the following:

1. for every conditional jump statement always try
to visit a still unexplored code region.

2. Explore paths that involve memory assignments
with a non-constant target address and avoid
paths that don’t.

3. When the loop analysis (see Section 4.2.3) fails
to reduce the number of iterations, try to push a
loop to perform more iterations; if the loop doesn’t
seem to write towards sensitive memory regions, as
a first approximation, give up with that loop.

4. Avoid dead-ends, i.e. paths that terminate with an
exit-like system call and free from “interesting”
statements (i.e. memory assignments with non-
constant target address, function calls, . . .).

5. When statically one or more reaching definitions
for the target address of an indirect control trans-
fer (i.e. call *%eax) are identified, each path that
contains those assignments should be forced to be
visited.

5 Related Works

Fuzzing [16] is a software testing technique that con-
sist in feeding an application with random input data.
If the program fails (e.g., by crashing) then a bug has
been found. Despite recently many protocol-dependent
fuzzers have appeared, the original fuzz testing uses
simple black-box random input: no knowledge of the
application is used in generating the random input.
Nevertheless, the amount of software faults found with
this approach can be impressive [15], even if program
bugs found with such method are very simple ones.

A significant part of recent efforts in vulnerability
analysis have been directed towards the analysis of soft-
ware written in high-level languages. An important
result in this field is described in [5]: EXE is a dy-
namic analysis tool able to generate inputs that crash
real code, by running it on symbolic input [11] and
tracking the constraints on each symbolic memory lo-
cation. An important difference between this approach
and ours is that EXE works on C source code and re-
quires that programmers mark which memory locations
should be treated as holding symbolic data. The pro-
gram is then recompiled with the EXE compiler, that
adds instrumentation code to perform symbolic exe-
cution. The major drawback of this approach is the
need of the source code. Moreover, EXE can fail to
identify certain bugs and vulnerabilities because of the

mismatch that exists between what the programmers
intend and what is actually executed by the processor:
security vulnerabilities can exist because of platform-
specific details such as memory layout details, register
usage, execution order, optimizations performed by the
compiler and even compiler bugs [3].

The work described in [7] is closely related to ours.
It describes an approach to the identification of vul-
nerabilities in x86 executables in ELF binary format,
based on static analysis and symbolic execution tech-
niques. Their approach uses the information extracted
during symbolic execution to statically detect when not
sanitized untrusted data could be used as parameter of
system() and popen() standard C library functions.
This method differs from ours in a number of ways:
first, their work is focused on the detection of poten-
tially harmful uses of not sanitized untrusted data as
parameter of dangerous system calls; second, perform-
ing only static analysis on the executable forces to ac-
cept a rather high false positive rate and, on the other
side, to take some optimistic assumptions on several
static analysis problems that can even result in miss-
ing a potentially significant number of vulnerabilities
(e.g., the authors assume that no aliasing occurs and
limit loop analysis to three iterations).

In [10], the authors describe a dynamic taint analysis
method for the automatic detection, analysis and sig-
nature generation of exploits on commodity software.
They label data originating or derived from untrusted
sources as tainted and then keep track of the propaga-
tion of tainted data as the program executes, detect-
ing when such data is used in dangerous ways. The
authors have implemented TaintCheck, a prototype
that performs dynamic taint analysis running the pro-
gram in its own emulation environment, using the Val-
grind framework [17]. It tries to identify an attack
while it is in progress and to automatically provide in-
formation about how the vulnerability was exploited
and which part of the payload led to the exploit of the
vulnerability.

Dynamic taint analysis has also been used in [21] to
prevent a broader class of attacks (e.g., command in-
jection) than memory corruption by enforcing security
policies on tainted data. Although the analysis is per-
formed on source code, the idea of policies on tainted
data can be used also in our context to implement a
finer grained detector for the identification of more se-
curity flaws.

The application of program analysis techniques to
machine code is a very active research area, not limited
to vulnerability analysis. As an example, in [12, 8] the
authors describe how symbolic execution techniques
can be employed to detect patterns of malware behav-
ior in binary code, while in [13] static analysis is ap-
plied to kernel modules in order to detect kernel-level
rootkits.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

6 Conclusions and Future Works

We have presented the design of a “smart fuzzer” for
the automatic identification of security-relevant flaws
in stripped dynamically-linked x86 binary executables,
based on a hybrid static/dynamic program analysis.
We have implemented a prototype tool that works on
Executable and Linking Format (ELF) binaries. Al-
though additional parsing and disassembling would be
required to process different object formats and differ-
ent instruction sets, the technique itself can be easily
ported to other platforms.

Currently our prototype is able to perform the static
and dynamic analyses described in Section 4, generat-
ing the path conditions associated to a particular ex-
ecution flow. However, these conditions can actually
be resolved only invoking a constraint solver manu-
ally, thus the iterative analysis has to be performed
manually. We are working on (i) the integration of an
off-the-shelf constraint solver to overcome such limi-
tation, (ii) improving loop analysis to deal with both
reducible and irreducible loops and (iii) reducing the
overhead of on-line analysis, mostly due to the use of
single-stepping, to be able to test our framework with
real applications.

7 Acknowledgments

We would like to thank the anonymous reviewers for
their useful suggestions and comments on this paper.

References

[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford. Dy-
namic Slicing in the Presence of Unconstrained Point-
ers. In TAV4: Proceedings of the Symposium on
Testing, Analysis, and Verification, pages 60–73, New
York, NY, USA, 1991. ACM Press.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers,
Principles, Techniques, and Tools. Addison-Wesley,
1986.

[3] G. Balakrishnan, T. Reps, D. Melski, and T. Teit-
elbaum. WYSINWYX: What You See Is Not What
You eXecute. In IFIP Working Conference on Ver-
ified Software: Theories, Tools, Experiments, Zurich,
Switzerland, October 2005.

[4] R. Banfi, D. Bruschi, and E. Rosti. Oboe: Object-
code buffer overflow evaluator. In Proc. of the Euro-
pean Symposium on Research in Computer Security,
ESORICS ’98, volume LNCS 1485, pages 17–31, Lou-
vain la Neuve (Belgium), Sept. 1998. Springer Verlag.

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill,
and D. R. Engler. EXE: Automatically Generating
Inputs of Death. In CCS ’06: Proceedings of the 13th
ACM conference on Computer and communications
security, pages 322–335, New York, NY, USA, 2006.
ACM Press.

[6] C. Cifuentes and K. J. Gough. Decompilation of Bi-
nary Programs. Software—Practice and Experience,
25(7):811–829, July 1995.

[7] M. Cova, V. Felmetsger, G. Banks, and G. Vigna.
Static Detection of Vulnerabilities in x86 Executables.
In Proceedings of the Annual Computer Security Appli-
cations Conference (ACSAC), Miami, FL, December
2006.

[8] J. R. Crandall, G. Wassermann, D. A. S. de Oliveira,
Z. Su, S. F. Wu, and F. T. Chong. Temporal search:
Detecting hidden malware timebombs with virtual
machines. Operating Systems Review, 40(5):25–36,
Dec. 2006.

[9] M. D. Ernst. Static and Dynamic Analysis: Synergy
and Duality. In WODA 2003: ICSE Workshop on
Dynamic Analysis, Portland, OR, May 9, 2003.

[10] D. S. James Newsome. Dynamic Taint Analysis: Auto-
matic Detection, Analysis, and Signature Generation
of Exploit Attacks on Commodity Software. In Pro-
ceedings of the 12th Annual Network and Distributed
System Security Symposium (NDSS), February 2005.

[11] J. C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7), July 1976.

[12] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and
R. Kemmerer. Behavior-based Spyware Detection. In
Proceedings of the 15th USENIX Security Symposium,
Vancouver, BC, Canada, August 2006.

[13] C. Kruegel, W. Robertson, and G. Vigna. Detecting
Kernel-Level Rootkits Through Binary Analysis. In
Proceedings of the Annual Computer Security Appli-
cations Conference (ACSAC), pages 91–100, Tucson,
AZ, December 2004.

[14] Michel Kaempf. Smashing The Heap For Fun And
Profit. Phrack Magazine, 11(57), 2001.

[15] B. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy,
A. Natarajan, and J. Steidl. Fuzz Revisited: A Re-
examination of the Reliability of UNIX Utilities and
Services. Technical report, University of Wisconsin-
Madison, April 1995.

[16] B. P. Miller, L. Fredrikson, and B. So. An Empirical
Study of the Reliability of UNIX Utilities. Comm. of
the ACM, 33(12):32, December 1990.

[17] N. Nethercote and J. Seward. Valgrind: A Program
Supervision Framework. In Proceedings of the Third
Workshop on Runtime Verification (RV ’03), Boulder,
Colorado, USA, July 2003.

[18] B. Schwarz, S. K. Debray, and G. R. Andrews. Disas-
sembly of Executable Code Revisited. In 9th Working
Conference on Reverse Engineering (WCRE), pages
45–54, Richmond, VA, USA, 2002. IEEE Computer
Society.

[19] G. Snelting, T. Robschink, and J. Krinke. Efficient
path conditions in dependence graphs for software
safety analysis. ACM Trans. Softw. Eng. Methodol.,
15(4), 2006.

[20] Wikipedia. Corner case — wikipedia, the free ency-
clopedia, 2006. [Online; accessed 22-January-2007].

[21] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced
policy enforcement: A practical approach to defeat
a wide range of attacks. In 15th USENIX Security
Symposium, Vancouver, BC, Canada, August 2006.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

